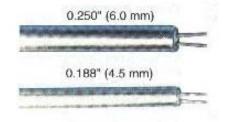

Stabaloy

Ultra-High Temperature Mineral Insulated Cable Made with Special Limits Of Error Thermocouple Wire

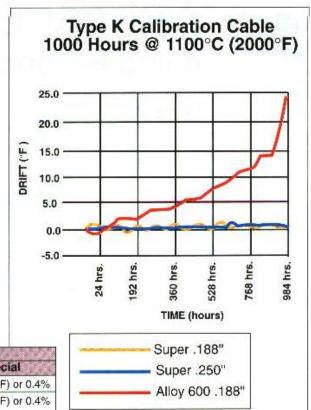


New Stabaloy sheathed mineral-insulated thermocouple wire can be used at ultra-high temperatures for prolonged periods with little degradation of the base metal. The sheath material uses Nickel-Chrome based Stabaloy sheathing, which provides excellent oxidation resistance. The sheath can withstand long-term exposure to combustion gases or air at temperatures up to 1205°C (2220°F). Short-term exposures to higher temperatures are also possible. Superior resistance to oxidation attack results from a tenacious and protective high temperature film that does not affect the stability of the thermocouple alloys. This film permits the sensor to be used at ultra-high temperatures for prolonged periods with improved accuracy over other available sheath materials. Super Stabaloy sheathing also provides excellent resistance to corrosion in high temperature chlorine-contaminated oxidizing environments and ammonia/nitride-rich environments at temperatures above 930°C (1800°F), the temperature at which the protective film forms.

- ➤ 1205°C (2220°F) Maximum Temperature
- ➤ Low Thermal Drift
- ➤ Nickel-Chrome Based Sheathing Provides Excellent High Temperature Performance
- Excellent Oxidation, Carburization and Chlorination Resistance
- > Special limits of Error
- Available with Type "K" Calibration Wire (Special Requests Can be Taken for Other Calibrations)
- ➤ Long Continuous Lengths Available! Call Sales for Pricing and Delivery

APPLICATIONS Heat Treating Metal Parts Gas or Oil Fired Furnaces Fuel Fired Heat Exchangers Ceramic Materials Firing Powder Metal Sintering Steel Carburizing Furnaces Vacuum/Atmosphere Melting & Annealing Solid Waste Incinerators Exchangers Fluidized Beds R&D Tube or Box Furnaces

Stabaloy


Specifications

Property	Value	Ref. Temp. °C (°F)	
Density	8.05 g/cu. cm	21 (70)	
Melting Temperature	1400°C	N/A	
Electrical Resistivity	122.9 mircohm-cm	1200 (2200)	
Thermal Conductivity	36.7 W/m-K	1200 (2200)	
Modulus of Elastiscity	137 GPa	1000 (1850)	
Tensile Strength	30 MPa	1100 (2000)	
Elongation	75%	1100 (2000)	

Limits of Error for Thermocouple Wire

T/C	Temperature Hange	Limit of Error		
Type		Standard	Special	
K	0 to 1250 (32 to 2282)	2.2°C (4°F) or .75%	±1.1°C (2°F) or 0.4%	
N	0 to 1250 (32 to 2282)	2.2°C (4°F) or .75%	±1.1°C (2°F) or 0.4%	

*Whichever is greater

Nominal	I homiool	Om	nacitian
NOIHHAI	Chemical		.,0511.011

Ni	Cr	Co	Mo	Fe	Ti
53.5	20.9	12.5	10.8	1.7	.42